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Abstract. As the fugacity for intersections in trails (intersecting but non-overlapping lattice 
walks) is increased, the configurations change from swollen ones, with the scaling exponents 
of self-avoiding walks, to compact ones. Separating the two regimes is a potentially new 
tricritical point with no perturbative renormalisation fixed point associated with it. Support- 
ing evidence for the existence of a tricritical point, its likely location and exponents are 
computed for the first time from exact enumeration of all trails up to a length of fifteen 
lattice constants on the triangular lattice. The divergence of the specific hear indicates the 
location of the tricritical point. Generalised ratio and Pad6 methods are used to extract 
the scaling exponents for the number of configurations and their end-to-end distance. 

1. Introduction 

The statistical properties of the so-called trail configurations were first approached by 
Malakis [ l ]  a few years ago. This lattice model interpolates between free random 
walks ( R W )  and the well studied self-avoiding walks (SAW) which also describe the 
conformations of long polymer chains. The trail problem differs from the above two 
in that it consists of all configurations of a random walker on a lattice which is free 
to intersect its path through an already visited site but is not allowed to go more than 
once on the same bond. 

In his original work, Malakis [ l ]  enumerated exact long trails on a square lattice 
and observed their scaling properties. He reached the non-trivial (and even somewhat 
surprising) conclusion that the trail model belongs to the SAW universality class, namely 
both models share the same scaling exponents. We recall that one such exponent is 
v which relates the average square end-to-end distance r (or the radius of gyration) 
to the length of the walk I. If all lengths are measured in terms of unit lattice spacing 
(see, for example, [2]): 

( r ; )  = 1’” (1.1) 

asymptotically for very large 1. I f  we denote the total number of configurations of 
length 1 by CI, then the exponent y is defined from the expected asymptotic behaviour: 

lim /+m C, = rIy-lcLr. (1.2) 

t Present address: Supercomputer Computations Research Institute, Tallahassee, FL 32306-4052, USA. 
$ Present address: AT&T Bell Laboratories, 480 Red Hill Road, Middletown, NJ 07748, USA. 
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The amplitude r and the so-called growth parameter p are not universal and are not 
the same in trails and in SAW. However, the exponents y (and v) are exactly the same 
in both models! We also note that the fractal dimension d of the trail is defined through 

I.= r' (1.3) 
with 

d = l / v .  (1.4) 

The continuum limit of the trails is intricate since in this limit there is no apparent 
difference between a site and a bond. However, the continuum limit was derived from 
the lattice Hamiltonian for the trail generating function by Shapir and Oono [3] and 
was found to be distinct from either of the RW or SAW ones. Basically it is a 2 n -  
component spin ( n  + 0) field theory but with a new term (due to the intersections) 
which breaks the O ( 2 n )  symmetry. This new term may be shown to be irrelevant in 
the RG sense (it decays away when fluctuations on larger and larger scales are integrated 
out), leading to similar scaling exponents for SAW and trails, as found numerically by 
Malakis [l]. Field theories for other generalised interacting walks (in which the 
rotational symmetry is unbroken) were derived by Jasnow and Fisher [4]. 

Another very interesting question arises, however, if the average number of inter- 
sections is controlled by assigning a fugacity f =  e' with each intersection ( 8  = - P E  
where E is the corresponding energy). The trail problem defined by Malakis and 
discussed so far corresponds to the case 8 = 0. In the limit 0 + -00, the intersections 
are suppressed and the SAW problem is recovered. In the other limit of very large and 
positive 8, the configurations with maximal number of crossings will dominate. Hence, 
the average form of the cluster will be compact with local disorder. In this collapsed 
phase, the fractal dimension is the same as the spatial one and v =I l / d  follows. So, 
as 8 is increased from zero to positive values we expect a change from a swollen phase 
(with SAW scaling properties) to a collapsed compact one. A similar situation occurs 
in a regular polymer as a function of the monomer-monomer attraction. In this latter 
case, the change occurs at the so-called 0 point which is represented by a tricritical 
point in the critical phenomena terminology. Tricriticality of some sort is also expected 
in the trail model from the following general considerations. If a fugacity z per 
monomer (or lattice step) is introduced, the limit I + 00 corresponds to the limit z + z, 
in the grand canonical ensemble [2]. The transition into the swollen phase at the 
critical value ofthe fugacity z, = p i '  is second order and the transition into the collapsed 
phase is likely to be first order. The intermediate point, hence, is expected to be a 
tricritical point. 

The tricritical point in the trail model may be a new one characterised by its own 
scaling exponents. It is the main subject of our present investigation. Apart from the 
study of a new tricritical point per se, there are other important motivations to do so. 
The RG calculations in d = 4 - E dimensions exhibit no perturbative fixed point. Instead 
the RG calculations predict the SAW type of behaviour for all values of 8 !  This result 
is physically unacceptable and we are presented with one of those rare cases in which 
the RG is powerless in predicting the scaling exponents. We therefore have to rely on 
alternative approaches like the series expansions used in this paper. It is also important 
to note that the field theory of trails is related by an inversion symmetry in the parameter 
space [3] to that of the random X Y  model which also lacks a perturbative fixed point 
for the random critical transition. Only speculations can be made today on whether 
a random X Y  transition exists and what its nature may be. Although the relation 
between these two problems is, in all likelihood, broken by the highest-order terms, 
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our results for the trails suggest the possibility for the existence of a non-perturbative 
critical random X Y  fixed point as well. We hope the present work will motivate more 
investigations of this challenging question. 

Another closely related problem is that of polymers with fused loops, the results 
on which will be presented elsewhere [ 5 ] .  In  this problem only the silhouettes of the 
trails are considered (and each silhouette is counted once, independent of how many 
trail configurations have this shadow). This model describes the tricritical behaviour 
of dilute polymer chains with equally spaced attractive groups attached to them 
(self-associating polymers). This tricriticality is described by a perturbative fixed point 
of order &! In a forthcoming work [ 5 ] ,  the behaviour of the two models will be 
compared. 

Extensive series on triangular and other lattices for the Malakis trails were generated 
and analysed by Guttmann [ 6 ] .  He confirmed that, when no fugacity is assigned to 
intersections, the scaling behaviour is sAw-like (in addition, he has found several exact 
results for the growth parameter). For the value of 0 = 0 our results agree with his 
and this serves as an independent check. Extensive series on fully self-avoiding walks 
may be found in Grassberger [ 7 ] .  

In this paper, the first in a series, we present ( 5  2 )  the exact enumeration of all 
trails on a triangular lattice with length 1 up to fifteen steps. The tables give full 
information on the walks with a given length 1, number of intersections I and end-to-end 
distance r. In § 3, the specific heat as a function of 0 is derived in order to locate the 
tricritical point [8]. We then apply (§ 4) the Dlog Pad6 method to compute a first 
estimate for the tricritical couplings and exponents. A new generalised ratio method 
[9] is used in § 5 to yield independent estimates for the same tricritical properties to 
check the consistency of the results. Section 6 is devoted to conclusions. 

2. The series 

Throughout the work, we use the following notation: 1 denotes the path length (i.e. 
the number of monomers), I denotes the number of intersections in a given trail and 
r denotes its end-to-end distance. The following two series are thus generated: 

c ( l , I )  = dy C ( l  I ,  r )  

d ( l ,  I) = C rZC( / ,  I ,  r )  

( 2 . l a )  

( 2 . l b )  

r 

r 

where C( 1, I,  r )  is the total number of trails with length 1, I intersections and end-to-end 
distance r. The series for c (  1, I )  and d(1, I )  are tabulated in tables 1 and 2 respectively+. 
Our results agree exactly with those of Grassberger [7] for the I = 0 case. 

Using the above notation, we define the average quantities: 

( 2 . 2 a )  

( 2 . 2 6 )  

t These were enumerated on a VAX 11/780 and took over two hundred CPU hours. 
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Table 1. The coefficients c(1, I )  (equation (2.1~2)).  

I 2 

1 I 
2 5 
3 23 
4 103 
5 455 
6 1991 
7 8 647 
8 37 355 
9 160 689 

I O  688 861 
1 1  2 944 823 
12 12559201 
13 53455781 
14 227 131875 
15 963627597 

2 
20 

134 
766 

4 070 
20 672 

101 944 
491 832 

2 333 386 
IO 925 332 
50 608 464 

232 356 758 
1058 850 906 

6 
96 

834 
5 706 

34 480 
194416 

1 046 648 
5 451 522 

21 697 690 
I37 989 466 
676 667 102 

3 4 5 6 

32 
552 

5 544 184 
42 664 3 640 

284 332 40 380 1 008 
1 736 208 336812 24 032 

10008008 2408092 292 064 6 800 
55378244 15620432 2654872 162768 

297091436 94925 152 20285016 2 148884 

7 
~ 

53 952 

Table 2. The coefficients d ( l ,  I )  (equation ( 2 . l b ) ) .  

i d ( / ,  1 )  

// I 0 1 2 3 4 5 6 7 

1 1 
2 I 2  
3 97 
4 654 
5 3 971 
6 22 624 
7 122 821 
8 644 082 
9 3 288 739 
IO 16440648 
I 1  80783857 
12 391 310240 
13 I 872 763 387 
14 8 870 963 422 
15 41 647 686 501 

16 
264 

2 688 
21 816 

154 892 
I 006 492 
6 139944 

35 722 136 
200 305 480 

1090417696 
5 794 647 408 

30176073228 

6 
144 

2 002 
20 748 

178 760 
1 360 340 
9 476 800 

61 812 808 
383 198 754 

2281480464 
13 143846886 

32 
936 

I3 992 264 
I53 600 7 440 

1 405 056 114924 1728 
I 1  354704 130304X 54 496 
83830696 12284252 890288 14096 

577833912 102407968 IO608 592 434304 
3 773806672 781068 568 104475800 7 307900 I 08 480 

3. Specific heat calculations 

The specific heat per link as defined in [8]: 

1 a' 
I ae' h l ( e )  =- -log u,(e) 

= ( I  ( e 1') - ( I ( e) )?  (3.1) 

is a measure of the relative fluctuations in the number of intersections. From the results 
on the 0 point [81, we expect A I ( € ' )  to diverge at the tricritical point, 8 = et. The values 
of h l ( 0 ) ,  for l =  11-15, are depicted in figure I .  The plot clearly shows how the peaks 
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0 
e 

Figure 1. Specific heat plots for I =  11-15. 

are converging to a fixed value of 0, the tricritical point. We then plot (figure 2 )  e,,,( I )  
against 1/1. Using linear regression, we find the Omax intercept (corresponding to I = 00) 
which gives us our estimate 8,: et = 0.60 * 0.05. Non-linear terms may somewhat 
increase or decrease this value. Note that this range is substantially smaller than the 
last maxima obtained for I =  15, which is 0 = 1.0. 

4. Pade analysis 

To find the tricritical values of the growth parameter p and the exponent y, we apply 
the standard Dlog PadC method to the series of U,(8) .  In figure 3 we show how p 
changes as a function of 0 for different PadC approximants [ L I M ] .  The effective 
exponents y (  8 )  are depicted in figure 4. In table 3, values of yr and pt for 0.6 s 8 G 1.0 
are quoted. Our best estimate for the value 8, is 0.6. The approximants [ 6 / 7 ]  and 
[7/7] suffer from interference of non-physical poles which cause anomalous deviations. 
From the best approximants, we estimate 

p, = 5.00 f 0.02 

y r =  1.18*0.04. 

The other rows, from 8 = 0.7 to 0 = 1.0 (the latter being the maximum of the specific 
heat for I = 15), are given in order to facilitate comparison with results obtained using 
the generalised ratio method (see 0 5) and in order to highlight the crucial importance 
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i i 
I I 

I I 

1.2 
0.5 

0 0. L 0.9 
1 I1 

Figure 2. The specific heat maxima, Omax,  plotted against 1/ 1. 

of the linear extrapolation to obtain the right values of 8, (and also Y, and v, which 
strongly depend on the determination of et). 

The exponent v, is extracted from the series for ( r : ( 8 ) )  (equation (2.26)). In figure 
5, we depict v ( 8 )  for various approximants (the location of the tricritical point is 
@, = 1.0 since ( r : ( 8 ) )  is a ratio of two series which diverge at the same point). In table 
4, the values of v, and p, are quoted in the same range (0.6 =S 8 6 1.0). Again, the right 
values should be in the range determined by the first two rows. Our best estimate at  
8, = 0.6 is 

v, = 0.52 * 0.02. 

Values of v, at 0.7 c 8 -S 1.0 are given for later comparison with the generalised ratio 
method. 

5. Generalised ratio method 

In a recent analysis of the 0 point [9], Privman suggested an extension of the ratio 
method which gives both the location of the tricritical point and the tricritical value 
of v with improved accuracy. They are extracted from recursive estimates: 

and the deviations from the average v :  
1 n + n l  



Non-perturbatiue tricritical exponents of trails: I 779 

1 

1 

- a 

4.0 - 

0 1.0 2.0 3.0 
e 

Figure 3. The growth constant p , ( e )  for approximants [5/6] ( x ) ,  [6/6]  (O), [ 6 / 7 ]  (U), 
[7/61 ( A )  and [7/71 (+I. 

In figures 6 and 7, we plot v, and 6v, respectively for 1 = 11-15 ( n  = 10, m = 5). The 
tricritical point is at the point of minimal spread in 6 v  and from it, we get 

e,= i.o+o.3 
U, = 0.46 * 0.04. 

If we compare these values with those of tables 3 and 4, we arrive at the following 
conclusion: the ratio method gives both for 8, and the exponent the corresponding 
Pad6 values but at 8 = 1.0, which is the location of the last maximum of the specific 
heat ( I  = 15) without the extrapolation to lower values of 8. From the way the locations 
of the maxima are varying with increasing I ,  we conclude this extrapolation to be 
necessary. We therefore also anticipate that, if higher-order results were available, the 
point of minimal spread in 6vl (equation (5.2)) will also shift towards smaller values 
of 6. (At present we do not have enough terms to estimate the shift and to confirm 
our estimate of the extrapolation (made using linear regression on e,,,) given in $ 3.) 
This, of course, raises doubts as to the accuracy of the generalised ratio method in 
predicting the location and exponent at the tricriticalo point made in [9]. One property 
which may influence this inaccuracy is the value of the crossover exponent. We have 
attempted to compute the crossover exponent 4 from the 13 derivatives of the series 
but our error bars are too large to yield a credible estimate. 
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I 

I 
0 1 .o 2.0 3.0 

e 
Figure 4. The effective exponent y(6') for approximants [5/6], [6/6], [6/7], [7/6]  and 
[7/7] (notation as in figure 3).  

Table 3. y , ( p , )  against B between %,,,(/= 1 5 ) =  1.0 and B,,, (extrapolated)=0.6. x ,  
defective poles. 

0.6 0.7 0.8 0.9 1 .o 

1.186 (5.002) 
1.192 (4.999) 
1.229 (4.986) 
1.178 (5.008) 
1.173 (5.019) 
1.476 (4.946) 
1.180 (5.006) 
1.321 (4.965) 

1.133 (5.123) 
1.134 (5.122) 
x ( X )  

1.132 (5.124) 
1.129 (5.126) 
1.122 (5.137) 
1.132 (5.123) 
1.151 (5.114) 

1.076 (5.258) 
1.076 (5.258) 
1.076 (5.258) 
1.076 (5.258) 
1.075 (5.258) 
1.076 (5.258) 
1.076 (5.258) 
1.074 (5.259) 

1.016 (5.408) 
1.021 (5.403) 
1.014 (5.409) 
1.010 (5.412) 
1.018 (5.407) 
1.016 (5.408) 
1.014 (5.409) 
1.016 (5.408) 

0.955 (5.573) 
x ( x )  
0.916 (5.506) 
0.921 (5.593) 
0.962 (5.532) 
0.907 (5.502) 
0.946 (5.580) 
0.946 (5.580) 

6. Conclusions 

In this paper, we have tabulated the triangular lattice series for the number of 
configurations and end-to-end distances for trails according to their length and number 
of intersections. 
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I 

- 0 . 4  
0 1.0 2.0 3.0 

e 
Figure 5. The effective exponent 2v(8) for approximants [5/6], [6/6], [6/7], [7/6] and 
[7/7] (notations as in figure 3). 

Table 4. vt(p,) against 8 between O m a x ( /  = 15) = 1.0 and OmAx (extrapolated) = 0.6. x, 
defective poles. 

L’( (Ai, 1 

[L/Ml /O 0.6 0.7 0.8 0.9 1 .o 

0.789 (0.965) 
0.497 (1.009) 
0.510 (1.007) 
0.520 (1.006) 
0.516 (1.006) 
0.508 (1.007) 
0.519 (1.006) 
0.530 (1.005) 

0.761 (0.966) 
0.488 ( 1  ,007) 
0.496 ( 1.005) 
0.500 (1.005) 
0.496 ( 1.005 ) 
0.496 ( 1.005) 
0.499 (1.005) 
x ( x )  

0.734 (0.966) 
0.482 (1.004) 
0.480 (1.004) 
0.480 ( 1.004) 
0.482 (1.004) 
0.479 ( 1.004) 
0.479 ( 1.004) 
0.481 (1.004) 

0.710 (0.966) 
0.476 ( 1.000) 
0.477 i 1.000) 
0.460 ( 1.003) 
0.439 ( 1.005) 
0.472 (1.001) 
0.459 ( I  ,003) 
0.465 ( I  .002) 

0.688 (0.965) 
0.469 (0.997) 
0.460 (0.999) 
0.440 ( 1.002) 
0.420 (1.004) 
0.450 (1.000) 
0.437 ( I  ,002) 
0.445 (1.001) 

We have also computed the ‘specific heat’ (mean square fluctuations in the number 
of intersections) and showed the potential existence of a novel tricritical point as the 
fugacity for crossing is increased. 

The maxima in the specific heat exhibit a regular trend towards lower values of 8 
as the order 1 in the series increases. We therefore have to extrapolate the value of et 
and deduce the best bounds on the tricritical exponents. The generalised ratio method 
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0.8 

>- 
( 

-0.1 
1.0 2.0 3.0 

e 
Figure 6. U,(@) (equation ( 5 . 1 ) )  for I =  11-15 

O ' O 4 I  

0.02 

1 -0.02 

-0.OL- 

0 0.4 1.2 
-0.051 

e 

3 

0 

Figure 7. 8 u , ( @ )  (equation (5 .2 ) )  for I =  11-15. 

does not account for this trend and therefore yields values which are only consistent 
with the largest order ( I  = 15) available. Longer series or alternative methods like 
Monte Carlo or finite-size scaling will be necessary to extract more precise exponents. 
We note, for example, that our estimates yield a relation y t > 2 v , .  This implies an  
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unexpected negative value for the exponent 7. I t  can be negative in the collapsed 
phase [lo] but is expected to be non-negative at the tricritical point. But 7 = 0 was 
recently conjectured for the 0 point [ 111. Despite the supporting evidence for a new 
tricritical behaviour, other possibilities, such as a fast crossover with rapid variation 
in various quantities (but no singularities) or a tricritical behaviour analogous to 
standard tricritical polymers (see, however, the above comment on the symmetry 
difference in their respective field theories), cannot be completely ruled out. We hope 
that the open questions will stimulate a more accurate determination of the tricritical 
properties for this special point which is inaccessible by renormalisation group and is 
not described by a perturbative fixed point in 4 - E dimensions. Finally, an identification 
of the tricritical point within the classification implied by conformal invariance may 
yield exact values for the tricritical exponents [ 10, 111. 
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